MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II – BACHILLERATO LOE – COMUNIDAD DE MADRIDDECRETO 67/2008, de 19 de junio, del Consejo de Gobierno, por el que se establece para la Comunidad de Madrid el currículo del Bachillerato Consejería de Educación (B.O.C.M. núm. 152, viernes 27 de junio de 2008, págs. 6-84) ANEXO I – MATERIAS DEL BACHILLERATO II. MATERIAS DE MODALIDAD – c) Modalidad de Humanidades y Ciencias Sociales MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I y II (B.O.C.M. núm. 152, págs. 81-83) |
|
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II
|
|
Ninguno de estos tres aspectos de las matemáticas supone una novedad para los alumnos que comienzan el Bachillerato. En la Educación Secundaria Obligatoria ya han sido iniciados en varios campos del conocimiento matemático, primando el aspecto operacional sobre el teórico. Estos conocimientos son los que han de constituir el punto de partida de la enseñanza de la materia en el Bachillerato, comenzando, de forma suave y gradual, a dar respaldo teórico a los conocimientos matemáticos mediante la introducción de definiciones, la demostración de teoremas y la realización de encadenamientos lógicos. |
|
Las matemáticas del Bachillerato, en la modalidad de Humanidades y Ciencias Sociales, están estrechamente relacionadas con la economía y la sociología. Sin embargo, el amplio espectro de estudios a los que da acceso el Bachillerato cursado a través de esta modalidad obliga a formular un currículo de la materia que no se circunscriba exclusivamente al campo de las mencionadas disciplinas, dando continuidad a los contenidos de la Educación Secundaria Obligatoria. Los contenidos de Matemáticas aplicadas a las Ciencias Sociales I y II, como materias del Bachillerato en la modalidad de Humanidades y Ciencias Sociales, se estructuran en torno a tres ejes: Aritmética y álgebra, Análisis y Probabilidad y estadística. En Matemáticas aplicadas a las Ciencias Sociales I, los contenidos adquieren la doble función de fundamentar los principales conceptos del análisis y ofrecer una base sólida a la economía y a la interpretación de fenómenos sociales en los que intervienen dos variables. En Matemáticas aplicadas a las Ciencias Sociales II se establece de forma definitiva las aportaciones de la materia a este Bachillerato sobre la base de lo que será su posterior desarrollo en la universidad o en los ciclos formativos de la formación profesional. La estadística inferencial o la culminación en el cálculo infinitesimal de las aportaciones del análisis funcional son un buen ejemplo de ello. Asimismo, los contenidos otorgan un papel predominante a los procedimientos y a las técnicas instrumentales, y se orientan a la resolución de problemas y a la explicación y comunicación de fenómenos presentes en el mundo de la economía, la sociología, la demografía y, en general, a todas las actividades que derivan de la realidad social. En el desarrollo del currículo se debe buscar que el alumno adquiera un grado de madurez que le permita comprender los problemas que se le presentan, elegir un modelo matemático que se ajuste a él e interpretar adecuadamente las soluciones obtenidas dentro del contexto del problema planteado. Las herramientas tecnológicas, en particular el uso de calculadoras y aplicaciones informáticas como sistemas de álgebra computacional o de geometría dinámica, pueden servir de ayuda tanto para la mejor comprensión de conceptos y la resolución de problemas complejos como para el procesamiento de cálculos pesados, sin perjuicio de la necesidad de mejorar la fluidez y la precisión en el cálculo manual simple, donde los estudiantes suelen cometer frecuentes errores que les pueden llevar a falsos resultados o inducir a confusión en sus conclusiones. La resolución de problemas debe caracterizar el proceso de enseñanza-aprendizaje de esta materia. Debe servir para que los alumnos desarrollen una visión amplia y científica de la realidad, para estimular la creatividad y la valoración de las ideas ajenas, la habilidad para expresar las ideas propias con argumentos adecuados y el reconocimiento de los posibles errores cometidos. Las estrategias que se desarrollan al resolver problemas constituyen una parte esencial de la educación matemática y activan las competencias necesarias para aplicar los conocimientos y habilidades adquiridas en contextos reales. El objetivo final es conseguir que los alumnos manejen con cierta soltura el lenguaje formal, comprendan los métodos propios de las matemáticas y adquieran algunos conceptos matemáticos fundamentales. Para ello, como en todo proceso educativo, hay que partir de lo conocido y volver a formularlo si es preciso para dar más claridad y mayor alcance a lo que el alumno ya sabe; graduar el orden de dificultad en los razonamientos, sencillos al principio, y aumentar su complejidad paulatinamente; insistir en las ideas básicas, enfocarlas desde puntos de vista y desde niveles diferentes; practicar con ellas a través de ejercicios y problemas, que, a la vez que contribuyen a asentarlas, proporcionan soltura en los métodos de trabajo. Por último, se deberá seguir cuidadosamente el proceso de aprendizaje de los alumnos, cuidando que estos desarrollen el grado de confianza en sí mismos necesario para sumergirse en el estudio de esta materia. Objetivos La enseñanza de las Matemáticas aplicadas a las Ciencias Sociales en el Bachillerato tendrá como finalidad el desarrollo de las siguientes capacidades: 1. Aplicar a situaciones diversas los contenidos matemáticos para analizar, interpretar y valorar fenómenos sociales, con objeto de comprender los retos que plantea la sociedad actual. 2. Adoptar actitudes propias de la actividad matemática como la visión analítica o la necesidad de verificación. Asumir la precisión como un criterio subordinado al contexto, las apreciaciones intuitivas como un argumento a contrastar y la apertura a nuevas ideas como un reto. 3. Elaborar juicios y formar criterios propios sobre fenómenos sociales y económicos, utilizando tratamientos matemáticos. Expresar e interpretar datos y mensajes, argumentando con precisión y rigor y aceptando discrepancias y puntos de vista diferentes como un factor de enriquecimiento. 4. Formular hipótesis, diseñar, utilizar y contrastar estrategias diversas para la resolución de problemas que permitan enfrentarse a situaciones nuevas con autonomía, eficacia, confianza en sí mismo y creatividad. 5. Utilizar un discurso racional como método para abordar los problemas: Justificar procedimientos, encadenar una correcta línea argumental, aportar rigor a los razonamientos y detectar inconsistencias lógicas. 6. Hacer uso de variados recursos, incluidos los informáticos, en la búsqueda selectiva y el tratamiento de la información gráfica, estadística y algebraica en sus categorías financiera, humanística o de otra índole, interpretando con corrección y profundidad los resultados obtenidos de ese tratamiento. |
|
7. Adquirir y manejar con fluidez un vocabulario específico de términos y notaciones matemáticos. Incorporar con naturalidad el lenguaje técnico y gráfico a situaciones susceptibles de ser tratadas matemáticamente. 8. Utilizar el conocimiento matemático para interpretar y comprender la realidad, estableciendo relaciones entre las matemáticas y el entorno social, cultural o económico y apreciando su lugar, actual e histórico, como parte de nuestra cultura. |
|
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II– BACHILLERATO LOE – COMUNIDAD DE MADRID MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES IContenidos Bloque 1. Aritmética y álgebra Bloque 2. Análisis Bloque 3. Probabilidad y estadística Criterios de evaluación 1. Utilizar los números racionales e irracionales, sus notaciones, operaciones y procedimientos asociados, para presentar e intercambiar información, controlando y ajustando el margen de error exigible en cada situación, y resolver problemas y situaciones extraídos de la realidad social y de la vida cotidiana. 2. Representar sobre la recta diferentes intervalos. Expresar e interpretar valores absolutos y desigualdades en la recta real. 3. Transcribir problemas reales a un lenguaje algebraico, utilizar las técnicas matemáticas apropiadas en cada caso para resolverlos y dar una interpretación, ajustada al contexto, de las soluciones obtenidas. 4. Utilizar convenientemente los porcentajes y las fórmulas del interés simple y compuesto para resolver problemas financieros (aumentos y disminuciones porcentuales, cálculo de intereses bancarios, TAE, etcétera) e interpretar determinados parámetros económicos y sociales. 5. Reconocer las familias de funciones más frecuentes en los fenómenos económicos y sociales, relacionando sus gráficas con fenómenos que se ajusten a ellas, e interpretar, cuantitativa y cualitativamente, las situaciones presentadas mediante relaciones funcionales expresadas en forma de tablas numéricas, gráficas o expresiones algebraicas. 6. Utilizar las tablas y gráficas como instrumento para el estudio de situaciones empíricas relacionadas con fenómenos sociales y analizar funciones que no se ajusten a ninguna fórmula algebraica y que propicien la utilización de métodos numéricos para la obtención de valores no conocidos. 7. Elaborar e interpretar informes sobre situaciones reales, susceptibles de ser presentadas en forma de gráficas o a través de expresiones polinómicas o racionales sencillas, que exijan tener en cuenta intervalos de crecimiento y decrecimiento, continuidad, máximos y mínimos y tendencias de evolución de una situación. 8. Distinguir si la relación entre los elementos de un conjunto de datos de una distribución bidimensional es de carácter funcional o aleatorio. 9. Interpretar el grado de correlación existente entre las variables de una distribución estadística bidimensional y obtener las rectas de regresión para hacer predicciones estadísticas en un contexto de resolución de problemas relacionados con fenómenos económicos y sociales. 10. Utilizar técnicas estadísticas elementales para tomar decisiones ante situaciones que se ajusten a una distribución de probabilidad binomial o normal, determinando las probabilidades de uno o varios sucesos, sin necesidad de cálculos combinatorios. 11. Abordar problemas de la vida real, organizando y codificando informaciones, elaborando hipótesis, seleccionando estrategias y utilizando tanto las herramientas como los modos de argumentación propios de las matemáticas para enfrentarse a situaciones nuevas con eficacia. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES IIContenidos Bloque 1. Álgebra Bloque 2. Análisis Bloque 3. Probabilidad y estadística Criterios de evaluación 1. Utilizar el lenguaje matricial y aplicar las operaciones con matrices en situaciones reales en las que hay que transmitir información estructurada en forma de tablas o grafos. 2. Utilizar el método de Gauss o los determinantes para obtener matrices inversas de órdenes dos o tres y para discutir y resolver un sistema de ecuaciones lineales con dos o tres incógnitas y un parámetro. 3. Transcribir un problema expresado en lenguaje usual al lenguaje algebraico, resolverlo, utilizando técnicas algebraicas determinadas: Matrices, resolución de sistemas de ecuaciones lineales y programación lineal bidimensional, interpretando críticamente el significado de las soluciones obtenidas. 4. Utilizar los conceptos básicos y la terminología adecuada del análisis. Desarrollar los métodos más usuales para el cálculo de límites, derivadas e integrales. 5. Analizar, cualitativa y cuantitativamente, las propiedades globales y locales (dominio, recorrido, continuidad, simetrías, periodicidad, puntos de corte, asíntotas, intervalos de crecimiento) de una función que describa una situación real, extraída de fenómenos habituales en las ciencias sociales, para representarla gráficamente y extraer información práctica que ayude a analizar el fenómeno del que se derive. 6. Utilizar el cálculo de derivadas como herramienta para obtener conclusiones acerca del comportamiento de una función y para resolver problemas de optimización extraídos de situaciones reales de carácter económico y sociológico, interpretando los resultados obtenidos de acuerdo con los enunciados. 7. Asignar e interpretar probabilidades a sucesos elementales, obtenidos de experiencias simples y compuestas (dependientes e independientes) relacionadas con fenómenos sociales o naturales, y utilizar técnicas de recuento personales, diagramas de árbol o tablas de contingencia. 8. Diseñar y desarrollar estudios estadísticos de fenómenos sociales que permitan estimar parámetros con una fiabilidad y exactitud prefijadas, determinar el tipo de distribución e inferir conclusiones acerca del comportamiento de la población estudiada. 9. Analizar de forma crítica informes estadísticos presentes en los medios de comunicación y otros ámbitos, y detectar posibles errores y manipulaciones tanto en la presentación de los datos como de las conclusiones. 10. Reconocer la presencia de las matemáticas en la vida real y aplicar los conocimientos adquiridos a situaciones nuevas, diseñando, utilizando y contrastando distintas estrategias y herramientas matemáticas para su estudio y tratamiento.
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II– BACHILLERATO LOE – COMUNIDAD DE MADRID
|