MATEMÁTICAS I Y II – BACHILLERATO LOE – COMUNIDAD DE MADRIDDECRETO 67/2008, de 19 de junio, del Consejo de Gobierno, por el que se establece para la Comunidad de Madrid el currículo del Bachillerato Consejería de Educación (B.O.C.M. núm. 152, viernes 27 de junio de 2008, págs. 6-84) ANEXO I – MATERIAS DEL BACHILLERATO II. MATERIAS DE MODALIDAD – b) Modalidad de Ciencias y Tecnología MATEMÁTICAS I y II (B.O.C.M. núm. 152, págs. 64-66) |
|
MATEMÁTICAS I y II (Bachillerato LOE en la Comunidad de Madrid)Introducción Matemáticas II requiere conocimientos de Matemáticas I Las Matemáticas ocupan un lugar importante en la historia del pensamiento y de la cultura. Han estado presentes tradicionalmente en los planes de estudio y, por su utilidad en los distintos campos de la vida moderna, parece evidente que la persona que aspire a un cierto nivel cultural, o simplemente a participar en la actual actividad humana, no puede prescindir de ellas, aunque sí pueda en muchas ocasiones prescindir de su manejo técnico. Es idea corriente suponer que esta práctica operacional es lo que se pretende en la enseñanza de la materia. Sin embargo, para obtener el mayor provecho posible de esta práctica, es necesario establecer un fundamento teórico. Junto a estos dos aspectos de las Matemáticas, instrumental y teórico, hay que destacar su papel formativo, pues por su forma de hacer proporciona disciplina mental para el trabajo y contribuye a desarrollar y cultivar las facultades del intelecto. |
|
Ninguno de estos tres aspectos de las Matemáticas supone una novedad para los alumnos que comienzan el Bachillerato. En la Educación Secundaria Obligatoria ya han sido iniciados en varios campos del conocimiento matemático, primando el aspecto operacional sobre el teórico. Estos conocimientos son los que han de constituir el punto de partida de la enseñanza de la materia en el Bachillerato, comenzando, de forma suave y gradual, a dar respaldo teórico a los conocimientos matemáticos mediante la introducción de definiciones, la demostración de teoremas y la realización de encadenamientos lógicos. |
|
MATEMÁTICAS I Y II– BACHILLERATO LOE – COMUNIDAD DE MADRID
Las Matemáticas del Bachillerato, en la modalidad de Ciencias y Tecnología, están estrechamente relacionadas con las disciplinas científicas. De una parte, son la herramienta imprescindible para su estudio y comprensión y, de otra parte, muchos de los conceptos matemáticos tienen su origen en problemas relativos a fenómenos físicos y naturales. Se debe potenciar esta relación y evitar que las Matemáticas aparezcan, a los ojos del alumno, como un conjunto de destrezas de cálculo sin motivación ni conexión con el mundo real. Los contenidos de Matemáticas I y II, como materias del Bachillerato en la modalidad de Ciencias y Tecnología, giran sobre tres ejes fundamentales: El álgebra, la geometría y el análisis, que cuentan con el necesario apoyo instrumental de la Aritmética y las estrategias propias de la resolución de problemas. En Matemáticas I, los contenidos relacionados con las propiedades generales de los números y su relación con las operaciones deben ser trabajados en función de las necesidades que surjan en cada momento concreto. A su vez, estos contenidos se complementan con nuevas herramientas para el estudio de la estadística y la probabilidad, con lo que se culminan todos los campos introducidos en la Educación Secundaria Obligatoria, independientemente de que se curse la materia de Matemáticas II, dotando al currículo de Matemáticas I de un carácter también terminal. La introducción de matrices y determinantes e integrales en Matemáticas II aportará nuevas y potentes herramientas para la resolución de problemas algebraicos, geométricos y funcionales. En esta etapa aparecen nuevas funciones de una variable. Se pretende que los alumnos sean capaces de distinguir los diferentes tipos de funciones a partir de su representación gráfica, así como las variaciones que sufre la gráfica de una función como resultado de traslaciones o dilataciones, tanto horizontales como verticales, de inversión o de valor absoluto. Con la introducción desde un punto de vista intuitivo e incluso geométrico de las nociones de límite y de derivada, se establecen las bases del cálculo infinitesimal en Matemáticas I, lo que dotará de precisión el análisis del comportamiento de las funciones. Las herramientas tecnológicas, en particular el uso de calculadoras y aplicaciones informáticas como sistemas de álgebra computacional o de geometría dinámica, pueden servir de ayuda tanto para la mejor comprensión de conceptos y la resolución de problemas complejos como para el procesamiento de cálculos pesados, sin dejar de trabajar la fluidez y la precisión en el cálculo manual simple, donde los estudiantes suelen cometer frecuentes errores que les pueden llevar a falsos resultados o inducir a confusión en sus conclusiones. La resolución de problemas tiene carácter transversal y será objeto de estudio relacionado e integrado en el resto de los contenidos. Las estrategias que se desarrollan constituyen una parte esencial de la educación matemática y activan las competencias necesarias para aplicar los conocimientos y habilidades adquiridas en contextos reales. La resolución de problemas debe servir para que el alumnado desarrolle una visión amplia y científica de la realidad, para estimular la creatividad y la valoración de las ideas ajenas, la habilidad para expresar las ideas propias con argumentos adecuados y el reconocimiento de los posibles errores cometidos. Las definiciones formales, las demostraciones (reducción al absurdo, contraejemplos) y los encadenamientos lógicos (implicación, equivalencia) dan validez a las intuiciones y confieren solidez a las técnicas aplicadas. Sin embargo, este es el primer momento en que el alumno se enfrenta con cierta seriedad al lenguaje formal, por lo que el aprendizaje debe ser equilibrado y gradual. El rigor característico de la disciplina en cuanto a las demostraciones debería tener carácter local, en determinadas parcelas, y no extenderse al conjunto de la materia, algo que, por otro lado, sería imposible. Así, los teoremas de Rolle, del valor medio o la regla de L´Hôpital podrían ser justificados suficientemente de modo geométrico. El simbolismo no debe desfigurar la esencia de las ideas fundamentales, el proceso de investigación necesario para alcanzarlas, o el rigor de los razonamientos que las sustentan. Deberá valorarse la capacidad para comunicar con eficacia esas ideas aunque sea de manera no formal. Lo importante es que el alumno encuentre en algunos ejemplos la necesidad de la existencia de este lenguaje para dotar a las definiciones y demostraciones matemáticas de universalidad, independizándolas del lenguaje natural. El objetivo final es conseguir que los alumnos manejen con cierta soltura el lenguaje formal (que en estudios posteriores van a encontrar prácticamente en todas las disciplinas), comprendan los métodos propios de las matemáticas y adquieran algunos conceptos matemáticos fundamentales. Para ello, como en todo proceso educativo, hay que partir de lo conocido y volver a formularlo si es preciso para dar más claridad y mayor alcance a lo que el alumno ya sabe; graduar el orden de dificultad en los razonamientos y aumentar su complejidad paulatinamente; insistir en las ideas básicas, enfocarlas desde puntos de vista y desde niveles diferentes; practicar con ellas a través de ejercicios y problemas, que, a la vez que contribuyen a asentarlas, proporcionan soltura en los métodos de trabajo. Por último, se deberá seguir cuidadosamente el proceso de aprendizaje de los alumnos, cuidando que estos desarrollen el grado de confianza en sí mismos necesario para sumergirse en el estudio de esta materia. Objetivos La enseñanza de las Matemáticas en el Bachillerato tendrá como finalidad el desarrollo de las siguientes capacidades: 1. Comprender y aplicar los conceptos y procedimientos matemáticos a situaciones diversas que permitan avanzar en el estudio de las propias matemáticas y de otras ciencias, así como en la resolución razonada de problemas procedentes de actividades cotidianas y diferentes ámbitos del saber. 2. Considerar las argumentaciones razonadas y la existencia de demostraciones rigurosas sobre las que se basa el avance de la ciencia y la tecnología, mostrando una actitud flexible, abierta y crítica ante otros juicios y razonamientos. 3. Analizar y valorar la información proveniente de diferentes fuentes, utilizando herramientas matemáticas para formarse una opinión que les permita expresarse críticamente sobre problemas actuales. 4. Utilizar las estrategias características de la investigación científica y las destrezas propias de las matemáticas (planteamiento de problemas, planificación y ensayo, experimentación, aplicación de la inducción y deducción, formulación y aceptación o rechazo de las conjeturas, comprobación de los resultados obtenidos) para realizar investigaciones y en general explorar situaciones y fenómenos nuevos. 5. Apreciar el desarrollo de las matemáticas como un proceso cambiante y dinámico, con abundantes conexiones internas e íntimamente relacionado con el de otras áreas del saber. 6. Emplear los recursos aportados por las tecnologías actuales para obtener y procesar información, facilitar la comprensión de fenómenos dinámicos, ahorrar tiempo en los cálculos y servir como herramienta en la resolución de problemas. 7. Utilizar el discurso racional para plantear acertadamente los problemas, justificar procedimientos, encadenar coherentemente los argumentos, comunicarse con eficacia y precisión, detectar incorrecciones lógicas y cuestionar aseveraciones carentes de rigor científico. 8. Mostrar actitudes asociadas al trabajo científico y a la investigación matemática, tales como la visión crítica, la necesidad de verificación, la valoración de la precisión, el interés por el trabajo cooperativo y los distintos tipos de razonamiento, el cuestionamiento de las apreciaciones intuitivas y la apertura a nuevas ideas. |
|
9. Expresarse verbalmente y por escrito en situaciones susceptibles de ser tratadas matemáticamente, comprendiendo y manejando términos, notaciones y representaciones matemáticas. 10. Desarrollar métodos que contribuyan a adquirir hábitos de trabajo, curiosidad, creatividad, interés y confianza en sí mismos para investigar y resolver situaciones problemáticas nuevas y desconocidas. |
|
MATEMÁTICAS I Y II– BACHILLERATO LOE – COMUNIDAD DE MADRID
MATEMÁTICAS IContenidos Bloque 1. Aritmética y Álgebra Bloque 2. Geometría Bloque 3. Análisis Bloque 4. Estadística y probabilidad Criterios de evaluación 1. Utilizar los números reales, sus notaciones, operaciones y procedimientos asociados, para presentar e intercambiar información y resolver problemas, valorando los resultados obtenidos de acuerdo con el enunciado. 2. Representar sobre la recta diferentes intervalos. Expresar e interpretar valores absolutos, desigualdades y distancias en la recta real. 3. Transcribir problemas reales a un lenguaje algebraico, utilizar las técnicas matemáticas apropiadas en cada caso para resolverlos (particularmente ecuaciones e inecuaciones) y dar una interpretación, ajustada al contexto, de las soluciones obtenidas. 4. Transferir una situación real problemática a una esquematización geométrica y aplicar las diferentes técnicas de medida de ángulos y longitudes y de resolución de triángulos para encontrar las posibles soluciones, valorándolas e interpretándolas en su contexto real. 5. Manejar el concepto de lugar geométrico en el plano, aplicándolo a la mediatriz de un segmento, la bisectriz de un ángulo y las cónicas. Obtener las ecuaciones reducidas de las cónicas. 6. Utilizar el lenguaje vectorial para interpretar analíticamente distintas situaciones de la geometría plana elemental, obtener las ecuaciones de rectas y utilizarlas, junto con el concepto de producto escalar de vectores dados en bases ortonormales, para resolver problemas de incidencia y cálculo de distancias. 7. Identificar las funciones habituales (lineales, afines, cuadráticas, exponenciales, logarítmicas, trigonométricas y racionales sencillas) que pueden venir dadas a través de enunciados, tablas o expresiones algebraicas y representarlas gráficamente para analizar sus propiedades características y relacionarlas con fenómenos económicos, sociales y científicos que se ajusten a ellas, valorando la importancia de la selección de los ejes, unidades, dominio y escalas. 8. Analizar, cualitativa y cuantitativamente, las propiedades globales y locales (dominio, continuidad, simetrías, periodicidad, puntos de corte, asíntotas, intervalos de crecimiento) de una función elemental sencilla, que describa una situación real, para representarla gráficamente y extraer información práctica que ayude a interpretar el fenómeno del que se derive. 9. Manejar el cálculo elemental de derivadas como herramienta para determinar el crecimiento, el decrecimiento, y los puntos críticos de funciones elementales sencillas. 10. Asignar probabilidades a sucesos correspondientes a fenómenos aleatorios simples y compuestos y utilizar técnicas estadísticas elementales para tomar decisiones ante situaciones que se ajusten a una distribución de probabilidad binomial o normal. 11. Interpretar el grado de correlación existente entre las variables de una distribución estadística bidimensional sencilla y obtener las rectas de regresión para hacer predicciones estadísticas. 12. Realizar investigaciones en las que haya que organizar y codificar informaciones, seleccionar, comparar y valorar estrategias para enfrentarse a situaciones nuevas con eficacia, eligiendo las herramientas matemáticas adecuadas en cada caso. MATEMÁTICAS II Contenidos Bloque 1. Álgebra lineal Bloque 2. Geometría Bloque 3. Análisis Criterios de evaluación 1. Utilizar el lenguaje matricial y las operaciones con matrices y determinantes como instrumento para representar e interpretar datos, relaciones y ecuaciones, y, en general, para resolver problemas diversos. 2. Utilizar el método de Gauss o los determinantes para obtener matrices inversas de órdenes dos o tres y para discutir y resolver un sistema de ecuaciones lineales con dos o tres incógnitas. 3. Transcribir problemas reales a un lenguaje algebraico, utilizar las técnicas matemáticas apropiadas en cada caso para resolverlos y dar una interpretación, ajustada al contexto, a las soluciones obtenidas. 4. Utilizar el lenguaje vectorial y las operaciones con vectores para transcribir situaciones derivadas de la geometría, la física y demás ciencias del ámbito científico tecnológico, resolver los correspondientes problemas e interpretar las soluciones de acuerdo con los enunciados. 5. Identificar, hallar e interpretar las distintas ecuaciones de la recta y del plano en el espacio para resolver problemas de incidencia, paralelismo y perpendicularidad entre rectas y planos, y utilizarlas, junto con los distintos productos entre vectores dados en bases ortonormales, para calcular ángulos, distancias, áreas y volúmenes. 6. Resolver problemas métricos y de incidencia con esferas, rectas y planos. 7. Transcribir problemas reales a un lenguaje gráfico o algebraico, utilizar conceptos, propiedades y técnicas matemáticas específicas en cada caso para resolverlos y dar una interpretación de las soluciones obtenidas ajustada al contexto. 8. Utilizar la información proporcionada por la función dada en forma explícita (dominio, recorrido, continuidad, simetrías, periodicidad, puntos de corte, asíntotas), por la derivada primera (crecimiento, decrecimiento y extremos relativos) y por la derivada segunda (concavidad, convexidad y puntos de inflexión) para representarla gráficamente y extraer información práctica cuando se trate de resolución de problemas relacionados con fenómenos naturales. 9. Aplicar el cálculo de límites y derivadas al estudio de fenómenos geométricos, naturales y tecnológicos, así como a la resolución de problemas de optimización. 10. Aplicar el cálculo integral a la medida de áreas de regiones limitadas por rectas y curvas sencillas que sean fácilmente representables, así como al cálculo de volúmenes de cuerpos de revolución y, en general, a la resolución de problemas del campo de la física en los que se haga necesario el cálculo de una suma de elementos diferenciales. 11. Realizar investigaciones en las que haya que organizar y codificar informaciones, seleccionar, comparar y valorar estrategias para enfrentarse a situaciones nuevas con eficacia, eligiendo las herramientas matemáticas adecuadas en cada caso.
MATEMÁTICAS I Y II– BACHILLERATO LOE – COMUNIDAD DE MADRID
|